1 ã¬ãŠã¹éçšååž°
1.1 åé¡ã®ã¢ãã«å
ã¬ãŠã¹éçšãçšããŠååž°æ²ç·ãæ±ããæ¹æ³ãå匷ããã®ã§ãŸãšããŸãã
ã¬ãŠã¹éçšååž°åé¡ïŒ
å
¥åããŒã¿x=x1â,â¯,xnâ ãäžãããããšããã
åå
¥åããŒã¿ã«å¯Ÿãã芳枬å€ããããã z^=z^1â,â
â
â
,z^nâ ãšèŠ³æž¬ããæ¡ä»¶äžã§ãæ°ããªå
¥åããŒã¿ xââ ã«å¯Ÿãã z(xââ) ã®æ¡ä»¶ä»ã確çååž p(uâ£z^) ãäºæ³ã§ããã ãããã
ããããªãã®zã¯ç¢ºç倿°ã§ããããããã®z^ã¯å®ãã¯ãã«ã§ãã確ç倿°ã®æç¹ã§ã¯ãã®å€ãããã€ã決ãŸã£ãŠããŸããããæž¬å®ããŠå€ã確å®ãããšããã®å€ã¯å®ãã¯ãã«ã«ãªããŸãã
ãã®åé¡ããã£ãšæ£ç¢ºã«å®åŒåããŠã¿ãŸãããã芳枬å€ã
z=y+ϵ,y=y(x),ϵâŒN(0,βâ1I)
ã®ããã«è¡šããããšãä»®å®ããŸããã€ãŸããæ¬è³ªãšãªãååž°æ²ç· y=y(x) ããã£ãŠãããããã®ããã¯ã¬ãŠã¹ååžã«åŸããšããã¢ãã«ãèããŠããããã§ããèªç¶ãªèª€å·®ã衚çŸããã®ã«ã¬ãŠã¹ååžã¯æçšãªã®ã§ããã
ããŠãäžããããããŒã¿ã»ãã (x1â,z^1â),â
â
â
,(xnâ,z^nâ) ã®æ
å ±ããååž°æ²ç· y=y(x) ãå°åºãããããã§ãããããã ããããªãæ
å ±ããå
ã®ååž°æ²ç·ãæ±ããã®ã¯éåžžã«å°é£ã§ããããã§ãyãã¬ãŠã¹ååžã«åŸã£ãŠããŸããšããéåžžã«å€§èãªä»®å®ãããŠããŸããã§ãã
ãã®ä»®å®ãéåžžã«ã¯ãªãã£ã«ã«ã§ãããªããªããã¬ãŠã¹ååžãšã¬ãŠã¹ååžã®åã¯ãã¬ãŠã¹ååžã«åŸããšããæ§è³ªããããããzããŸãã¬ãŠã¹ååžã«åŸãããã§ããããã«ãã®ä»®å®ã«å ããŠãååž°æ²ç·ãããŒã¿ã»ãã (x1â,z^1â),â
â
â
,(xnâ,z^nâ) ãééãããšããæ¡ä»¶ã®ããšæ¡ä»¶ä»ã確çãèšç®ããŸãããããšããªããšäžæè°ãªããšã«ååž°æ²ç·ã«çžåœãããã®ãéæ³ã®ããã«å°åºãããŠããŸãã®ã§ãããã®ç¹ãã¬ãŠã¹éçšååž°ã®ãšãã§ããªãé¢çœãç¹ã«ãªããŸãã
ã¬ãŠã¹éçšååž°åé¡ã®ã¢ãã«åïŒ
å
¥åããŒã¿ xâR ã«å¯ŸããåºåããŒã¿ã以äžã®ããã«ã¢ãã«åããã
- 芳枬å€ã¯ãååž°æ²ç· y(x) ãšèª€å·®ã®åã§è¡šçŸãããã
z=y+ϵ, y=y(x), ϵâŒN(0,βâ1I)
- y(x) ã¯ãã颿°ã®ç·åçµåã§è¡šçŸã§ããã
y(x)=âl=1nâwlâÏlâ(x)=wâ
Ï(x)
- y ããŸãã¬ãŠã¹ååžã«åŸããšä»®å®ããã
yâŒN(â,â)
1.2 ã«ãŒãã«é¢æ°ãçšããŠ
ã¬ãŠã¹éçšã«ããååž°ãããã«ã¯ã«ãŒãã«é¢æ° k(x,y) ãå¿
èŠã§ããã«ãŒãã«å
ç©ãæ±ã£ãç« ãšåæ§ã«ã以äžã®ãããªãã¯ãã«ç©ºé(=åçæ žãã«ãã«ã空é)ãèããŠã¿ãŸãããã
åçæ žãã«ãã«ã空éïŒ
åçæ žãã«ãã«ã空é Hkâ ã以äžã®ããã«å°å
¥ããã
(1): ã«ãŒãã«é¢æ° k(x,y) ãäžããäžããããããŒã¿ x1â,â
â
â
,xnâ ã«å¯ŸããŠã
k(x,xiâ)â¡kxiââ(x)
ãšå®çŸ©ããé©å® kxiââ ãšç¥èšããããããã®é¢æ°ããªãç·åçµå
câ
kxâ=c1âkx1ââ(x)+â
â
â
+cnâkxnââ(x)âHkâ
ã§æ§æããããã¯ãã«ç©ºéã Hkâ ãšããããã®ç©ºéã«å
ç© âšâ
,â
â©kâ ã
âšcâ
kxâ,dâ
kxââ©kâ=âi,j=1nâciâdjâk(xiâ,xjâ)
ã®ããã«å°å
¥ãããã«ãŒãã«é¢æ°ã®æ§è³ªããããã®å
ç©ã¯å
ç©ã®å
¬çãæºããã
(2): å
ç©ã®å®çŸ©ã®ä»æ¹ããã f(x)âHkâ ã«å¯ŸããŠ
-
k(xiâ,xjâ)=âškxiââ,kxjâââ©kâ
-
f(xiâ)=âšf,kxjâââ©kâ
ãæãç«ã€ããšã«æ³šæããããã®ãã¯ãã«ç©ºé(ãå®ååãã) ãã®ãåçæ žãã«ãã«ã空éãšããã
æ¬åœã¯ä»£å
¥ååãé£ç¶ãªãã«ãã«ã空éã®ããšãåçæ žãã«ãã«ã空éãšå®çŸ©ããã®ã§ãããã ãŒã¢ã»ã¢ãã³ã·ã£ã€ã³ã®å®çãšãªãŒã¹ã®è¡šçŸå®çããããããã¯åå€ã«ãªããŸãã
kx1ââ,â
â
â
,kxnââ ãã°ã©ã ã·ã¥ãããçŽäº€åããåºåºé¢æ°ã Ï1â(x),â
â
â
,Ïnâ(x) ãšããŸãããã®æä»¥äžã®éèŠãªåŒã蚌æã§ããŸãã
k(x,y)=âl=1nâÏlâ(x)Ïlâ(y)
蚌æã¯ä»¥äžã®éãã§ãã
k(x,y)â=âškxâ,kyââ©Hkââ=âšl=1ânââškxâ,Ïlââ©kâÏlâ,m=1ânââškyâ,Ïmââ©kâÏmââ©kâ=l=1ânâm=1ânââškxâ,Ïlââ©kââškyâ,Ïmââ©kââšÏlâ,Ïmââ©kâ=l=1ânâm=1ânââškxâ,Ïlââ©kââškyâ,Ïmââ©kâÎŽlmâ=l=1ânââškxâ,Ïlââ©kââškyâ,Ïlââ©kâ=l=1ânâÏlâ(x)Ïlâ(y)â
ãã®é¢æ°ã§ååž°æ²ç· y(x) ã
y(x)=wâ
Ï(x)
ã®ããã«è¡šçŸããŸããã¢ãã«å (3) ã®ä»®å®ããy ã¯ã¬ãŠã¹ååžã«åŸããŸããããã衚çŸããããã«ãwâŒN(0,I) ãä»®å®ããŸãããã®æãyãã¬ãŠã¹ååž N(0,ΊΊâ€) ã«åŸããŸãã
wâŒN(0,I)â¹yâŒN(0,ΊΊâ€)
ããã§ÎŠã¯ä»¥äžã®ãããªè¡åã§ãã
Ί=âÏ1â(x1â)â®Ï1â(xiâ)â®Ï1â(xnâ)ââŠâŠâŠâÏlâ(x1â)â®Ïlâ(xiâ)â®Ïlâ(xnâ)ââŠâŠâŠâÏnâ(x1â)â®Ïnâ(xiâ)â®Ïnâ(xnâ)ââ
ΊΊâ€ã®æå³ã¯æç¢ºã§ãã
ΊΊâ€=ââl=1nâÏlâ(x1â)Ïlâ(x1â)â®âl=1nâÏlâ(xiâ)Ïlâ(x1â)â®âl=1nâÏlâ(xnâ)Ïlâ(x1â)ââŠâŠâŠââl=1nâÏlâ(x1â)Ïlâ(xjâ)â®âl=1nâÏlâ(xiâ)Ïlâ(xjâ)â®âl=1nâÏlâ(xnâ)Ïlâ(xjâ)ââŠâŠâŠââl=1nâÏlâ(x1â)Ïlâ(xnâ)â®âl=1nâÏlâ(xiâ)Ïlâ(xnâ)â®âl=1nâÏlâ(xnâ)Ïlâ(xnâ)ââ
=âk(x1â,x1â)â®k(xiâ,x1â)â®k(xnâ,x1â)ââŠâŠâŠâk(x1â,xjâ)â®k(xiâ,xjâ)â®k(xnâ,xjâ)ââŠâŠâŠâk(x1â,xnâ)â®k(xiâ,xnâ)â®k(xnâ,xnâ)ââ=K
ã®ããã«ãåè¡åèŠçŽ ãã«ãŒãã«é¢æ°ã«ãªããŸããããããã£ãŠãKâ¡ÎŠÎŠâ€ ãšæžãã®ãèªç¶ã§ãããã
z=y+ϵ, yâŒN(0,K), ϵâŒN(0,βâ1I) ã§ãããã¬ãŠã¹ååžã®åã¯ãŸãã¬ãŠã¹ååžãªã®ã§ããã®ååžã
zâŒN(0,K+βâ1I)
ã®ããã«æ±ãŸããŸãããã®ããã«ããªãã®æž¬å®çµæããªãã®ç¶æ³ã§ã¯ãäžå¿ããŒãã®ã¬ãŠã¹ååžã«ãªããŸãã
1.3 æ¡ä»¶ä»ã確çååž
ä»åã®åé¡ã®ååãããŸãããã
ã¬ãŠã¹éçšååž°åé¡ïŒ
å
¥åããŒã¿ x=x1â,â
â
â
,xnâ ãäžãããããšããã
åå
¥åããŒã¿ã«å¯Ÿãã芳枬å€ããããã z^=z^1â,â
â
â
,z^nâ ãšèŠ³æž¬ããæ¡ä»¶äžã§ãæ°ããªå
¥åããŒã¿ xââ ã«å¯Ÿãã z(xââ) ã®æ¡ä»¶ä»ã確çååž p(uâ£z^) ãäºæ³ã§ããã ãããã
æ°ããªå
¥åããŒã¿ xââ=xn+1â,â
â
â
,xn+mâ ã远å ããããšããŸãããããã®æ zallâ=z1â,â
â
â
,zn+mâ ã®ç¢ºçååžã¯
zallââŒN(0,Kn+mâ+βâ1In+mâ)
ãšè¡šãããŸããããã§ã
Knâ=âk(x1â,x1â)â®k(xiâ,x1â)â®k(xnâ,x1â)ââŠâŠâŠâk(x1â,xjâ)â®k(xiâ,xjâ)â®k(xnâ,xjâ)ââŠâŠâŠâk(x1â,xnâ)â®k(xiâ,xnâ)â®k(xnâ,xnâ)ââ
Kn+mâ=âk(x1â,x1â)â®k(xiâ,x1â)â®k(xn+mâ,x1â)ââŠâŠâŠâk(x1â,xjâ)â®k(xiâ,xjâ)â®k(xn+mâ,xjâ)ââŠâŠâŠâk(x1â,xn+mâ)â®k(xiâ,xn+mâ)â®k(xn+mâ,xn+mâ)ââ
ãšããŠããŸããå
¥åããŒã¿ x=x1â,â
â
â
,xnâ ã«å¯Ÿãã芳枬å€ããããã z^=z^1â,â
â
â
,z^nâ ãšç¢ºå®ãããšããŠãzâââ¡zn+1â,â
â
â
,zn+mâ ã®ç¢ºçååžãæ±ããããšã¯ã§ããã§ãããã?
éåžžã«é¢çœãããšã«ãå€å€éã¬ãŠã¹ååžã®äžéšã®å€æ°ãå®ãŸã£ãæ¡ä»¶ã§ã®æ¡ä»¶ä»ã確çååžã¯ããŸãã¬ãŠã¹ååžã«ãªããŸãããã®ååžã¯åæ£ã«ãã£ãŠä¿¡é Œåºéãäžããããšãã§ããã®ã§ããzââ ã®å€ãââ~ââã«å
¥ã確çã95%ã ãããšããåœ¢ã®æšå®ãããããšãã§ããŸã!
ãããæ¡ä»¶ä»ã確çãæ±ããŸããããæ¡ä»¶ãªãã®ç¢ºçååžã¯
zallââŒN(0,Kn+mâ+βâ1In+mâ)
âp(zallâ)=γexp(â21ââš(Kn+mâ+βâ1I)â1(zzâââ),(zzâââ)â©)
ãšãªããŸããÎ³ã¯æ£èŠå宿°ã§ãããä»åã®è°è«ã§ã¯å
šãé¢ä¿ãªãã®ã§ã¹ã«ãŒããŸãã以éã®è°è«ã§ãæ£èŠå宿°ã¯å
šã䜿çšããŸãããæž¬å®ã«ãã z=z^ ãå®ãŸã£ãŠããæ¡ä»¶äžã§ã®æ¡ä»¶ä»ã確çååžã¯
p(zâââ£z^)=γexp(â21ââš(Kn+mâ+βâ1I)â1(z^zâââ),(z^zâââ)â©)
ã§äžããããŸããææ°é¢æ°ã®äžèº«ãå¹³æ¹å®æããããšãç®è«ã¿ãŸãã
Kn+mâ+βâ1I=(Knâ+βâ1Inâkâ€âkKmâ+βâ1Imââ)
ãšãããã¯ã«åããŸããããã§ã
Kmâ=âk(xn+1â,xn+1â)â®k(xn+mâ,xn+1â)ââŠâŠâk(xn+1â,xn+mâ)â®k(xn+mâ,xn+mâ)ââ
k=k(x,xââ)=âk(x1â,xn+1â)â®k(xnâ,xn+1â)ââŠâŠâk(x1â,xn+mâ)â®k(xnâ,xn+mâ)ââ
ãšç°¡ç¥åããããŸãã
(Kn+mâ+βâ1I)â1=(L11âL21ââL12âL22ââ)
ãšããŸããå
ã®è¡åã察称è¡åãªã®ã§ãL12â€â=L21âãææ°é¢æ°ã®äžèº«ã¯
âš(L11âL21ââL12âL22ââ)(z^zâââ),(z^zâââ)â©=âšL11âz^,z^â©+2âšL12âzââ,z^â©+âšL22âzââ,zâââ©
ãšè¡šããŸãã zââ ã«ã€ããŠå¹³æ¹å®æããããã«ã
âšL11âz^,z^â©+2âšL12âzââ,z^â©+âšL22âzââ,zâââ©=âšL11âz^,z^â©+âšL22â(zâââa),(zâââa)â©ââšL22âa,aâ©
ãšãªããããªaãæ±ããŸããaã«èª²ããããæ¡ä»¶ã¯ã
âšL12âzââ,z^â©=ââšL22âzââ,aâ©
ãªã®ã§ããããæºããã«ã¯
a=âL22â1âL12â€âz^=âL22â1âL21âz^
ãšããã°è¯ãããšãç°¡åãªèšç®ã§ããããŸããããšã¯è¡å L11â,â
â
â
,L22â ãããããèšç®ããŠãaã®è¡šåŒã«ä»£å
¥ãããšã
a=kâ€(Knâ+βâ1Inâ)â1z^
ããã«ã (Knâ+βâ1Inâ)â1z^=(c1â,â
â
â
,cnâ)†ãšããã°ã
a=âk(x1â,xn+1â)â®k(x1â,xn+mâ)ââŠâŠâk(xnâ,xn+1â)â®k(xnâ,xn+mâ)âââc1ââ®cnâââ=ââj=1nâcjâk(xjâ,xn+1â)â®âj=1nâcjâk(xjâ,xn+mâ)ââ
ãšãããµãã«ç°¡ç¥åããŠæžãããšãã§ããŸãã
âš(Kn+mâ+βâ1I)â1(z^zâââ),(z^zâââ)â©=âšL11âz^,z^â©+âšL22â(zâââa),(zâââa)â©ââšL22âa,aâ©
ãšãªããzââ ã®é¢æ°ãšããŠå
ã»ã©ã®æ¡ä»¶ä»ã確çãèšç®ãããšã
p(zâââ£z^)=γâ²exp(â21ââšL22â(zâââa),(zâââa)â©)
ãå°ãããŸãããŸãšããŸãããã以äžã®åŒãååããŸãã
Kn+mâ+βâ1I=(Knâ+βâ1Inâkâ€âkKmâ+βâ1Imââ)
(Kn+mâ+βâ1I)â1=(L11âL21ââL12âL22ââ)
æ¡ä»¶ä»ã確çã®æçµçµæïŒ
ã¬ãŠã¹éçšååž°åé¡ã®è§£çããæ¡ä»¶ä»ã確çååžã¯ã以äžã®ããã«å¹³åaãå
±åæ£è¡å L22â1â ã§ããã¬ãŠã¹ååžã«åŸãã
p(zâââ£z^)=γâ²exp(â21ââšL22â(zâââa),(zâââa)â©)
ããã§ãå¹³åãšåæ£ã®ããããã®åŒãæç€ºãããšã
å¹³å:
ÎŒ(xââ)=kâ€(Knâ+βâ1Inâ)â1z^
å
񆑜:
Σ(xââ)=Kmâ+βâ1Imââkâ€(Knâ+βâ1Inâ)â1k
äžã®åŒã«ãããæ°èŠããŒã¿ xââ ã«å¯Ÿããå¹³åãšåæ£ãããããããããã§ããŸãããã®ããã«ãy=y(x) ãã¬ãŠã¹ååžã«åŸããšããä»®å®ã®ããšã§ã¯ãããŒã¿ã«å¯Ÿããæ¡ä»¶ä»ã確çååžãã¬ãŠã¹ååžã«ãªããååž°æ²ç·ã«å¯Ÿå¿ãããã®ãã¬ãŠã¹éçšã®å¹³åå€ã®åœ¢ã§å°åºãããããšã«ãªããŸãã